
aa as is
Re

SA
eh

prey

SYNTHETIC FIBRE We continue
explore the possibilities of the MIDI
interface and look at how synthesised music
is likely to develop

to

FIRM OFFER The Apple IIcis an
upgraded new model. We review it
thoroughly and scrutinise the marketing
strategies of Apple |

PIECE WORK We construct two simple
shapes to illustrate the principle of
procedures in LOGO

FIBONACCI SEQUENCE TO FILE
MAINTENANCE A weekly glossary of
computing terms

TYPE CAST A Basic program for the
Commodore 64 that will enable you to
create and manipulate your own characters
on the screen :

library of subroutines will save time and
programming effort

SIMPLE ARITHMETIC We perform
simple calculations using the 6809 5 if
instruction set

THE TECHNOCRATS Memotech built its
reputation on its expansion packs for ABD
Sinclair. Now it makes its own computers

SWITCHED ON We show how to builda
relay device that will enable you to control 5/4
low power electrical devices 7

INSIDE
REFERENCE MANUAL A reference card pack
that complements the machine code course COVER

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

A gS

Of all the available microcomputer-based
music systems, MIDI offers the widest
range of applications. Musicians use the
interface to upgrade performance
capabilities, both live and in the studio. And
MIDI offers the home computer owner a
way into the world of electronic music.
Se eee ae ES Sess aS

In education, MIDI offers some very real
advances, both in schools and. in the home.
Learning to read music is often difficult, even
when the learner is already quite competent as a
performer. The early stages of working out such
things as sharps and flats and time signatures can
be laborious and time-consuming, and the
connection between the marks on the paper and
what is actually heard rarely seems obvious.
A major part of the problem lies in the nature of

music itself: in order to make any sense, it has to be
a series of events occurring through
only way that a beginner can keep track of the
visual notation is to keep stopping the music in
question, then all the time-duration indicators in
the score become pointless. Similarly, the
beginner may spend some time in trying to
interpret a particular bar or sequence; while this is
being done the music will have moved on to
something quite different.

MIDI removes these obstacles. It can enable a
synthesiser performance to be stored in a micro’s
memory and, with the appropriate software, will
give a graphic display of the music being played.
This is an invaluable aid to any music student — it

time. If the

means that if, say, a Middle C is played on the
synthesiser keyboard, then a Middle C will be
shown on the five-line stave on the display screen.
Ifa B minor chord is held down for a certain length
of time, the harmonic components of the chord —
B, D and F — will be displayed, together with the
appropriate duration.

This idea could be extended by software that
plays a pre-programmed piece of music on the
interfaced synthesiser while a fully notated score
rolls by on the screen. In this situation, both the
music and its notation could be stopped
simultaneously and re-run from a specified bar
number if the user encounters a problem. In
addition, the overall sound of the music could be
varied by changing the control parameters on the
synthesiser — thus introducing the user to the art
of arranging.

Once a degree of confidence in reading music
has been attained, then it should be easier to write
music with the aid of the alphanumeric computer
keyboard. This may involve entering performance
data without any immediate reference to a sound
from the synthesiser and then testing the result
against the original intentions. Once this more
advanced skill is acquired, five-line stave notation
could be discarded in favour of another system
such as MCL (music composition language). For
electronic music, an MCL is a more appropriate
means of entering data as it includes specification
of characteristics exclusive to electronic sound
production. No standard has been developed for
MCL application — each machine has its own
MCL. Stave notation, although a_ useful

THE HOME COMPUTER ADVANCED COURSE 56f

New Sounds, New Style
One of several new synthesisers
in the DX range from Yamaha,
the DX7 incorporates a method
of building sound, FM synthesis,
previously restricted to
machines costing thousands of
pounds. Instead of taking an
existing sound and modifying it
by passing it through filters or
adjusting envelope controls, the
DX7 creates it own complex
sounds by combining six
waveforms in a variety of ways.
As a result, the DX7
approximates the sounds of
acoustic instruments much
more closely than other
synthesisers. The DX7 also
incorporates breath control, so
a musician can blow into a
receiver and add breath-like
variations to saxophone or
trumpet sounds, for example.
The DX7 can use ROM packs
with prerecorded sound
characteristics, or it can store
sounds you create on RAM
packs. The DX7 sells for about
£1,400

MARCUS WILSON-SMITH

KEVIN JONES suse ci ea CAE AEE ED ae asie sua ts

sunieaiitd visual guide is a system that sieaiies
electronics by several centuries, and cannot
accommodate all the new notations required for
electronic music. |

For many microcomputer owners,
understanding stave notation or MCL will be the
key to getting the most from MIDI. For students in
schools and colleges, a major obstacle is the
present character of music education. For most
music students, the accepted area of study is still
firmly based in European classical music. The
majority of classical musicians and teachers
identify electronic music with the more avant-
garde or radical composers of the last two
decades, and, to an extent, with contemporary
pop music. Neither of these fields is accepted as
being on a par with classical music. In fact, some
classicists would even question whether they were
‘music’ at all.

It seems unlikely, therefore, that MIDI’s
educational potential will be much explored in the
mainstream music curriculum, especially since
computing skills are required. in addition to
musical electronics. ‘There can be few computer
science courses with sound-proofing facilities that
are adequate for a class of MIDI synthesiser
players. If MIDI proves to be popular in such an
environment, a simple solution such as the use of
headphones will be required. But, as most MIDI
units are designed to interface with one or more
synthesisers, several signals would be required to
deal with this. Even at a basic level, MIDI use in
education implies the development of computer
music studio facilities, and it would seem to
require an active involvement by computer
science students as well as by music pupils.

For live performances, MIDI is primarily a
means of integrating a number of synthesisers,
sequencers and drum machines into a single

562 THE HOME COMPUTER ADVANCED COURSE

| Synthesised
Sound
Recently, several

: synthesisers that are activated.
_ from the strings of aguitar

father than the keys of a piano.
The Roland GR700 uses
standard guitar strings.
Complex sound information is

picked up by a hexaphonic
_ (six-sound) input and sent to

- guitar parameters are added. A
more exotic approach to the
same technique is the —

 SynthAxe, a 6809- controlled
_ synthesiser. The SynthAxe, a
development prototype, picks
up sound data from an

the string and the fret. Sensors
at the top of the neck pick up

~ bending and sliding variations.
Asecond set of strings anda
small keyboard are used to
Bc cate the sound

| écoatrallable oye Ther most worrying possibility
for musicians who use extensive sequencing in
their performances is a loss of synchronisation
between units, and a resultant musical
breakdown. Performers as well known as the
Thompson Twins and Howard Jones have been
known to run tapes of their studio-recorded
backing tracks while ‘performing live’, rather than
take the risk. In theory at least, multi-synthesiser
groups should have more trouble-free
performances thanks to MIDI.

One feature of this advance is that such sroups
will no longer have the appearance of being
‘multi-synthesiser’. Since the early 1970s, a
synthesiser has generally been thought of as a _
keyboard instrument, with a number of parameter
control knobs and sliders set in a fascia above the
keys. But if one keyboard synthesiser is using
MIDI to control a second or third, then there is no
longer any necessity to have more keyboards than
the one on the master instrument. As MIDI use
becomes more general, so more ‘synthesiser
modules’ are appearing on the market. ‘These are -
simply the sound-generating and sequencing units _
that were formerly part of keyboard instruments.
As these modules have little or no visual interest,
there is no need for them to be present on stage.

There is another development that pre-dates
MIDI, but which is likely to gain more attention as
the number of keyboards diminish. This is the

- possibility of having electronic sound synthesis
controlled by string-playing data from guitars, and
by breath and mouth control data from wind
instruments. Compared to the mechanical action
of simply depressing a note on a keyboard,
plucking a string or vibrating a reed involves more
complex acoustic information being transmitted
to the instrument in question. If this information is
digitally encoded and transmitted via MIDI to an

manufacturers have developed —

the synthesiser where the non-

electrical connection between.

aaa

off-stage synthesiser module, there is no reason
why a saxophone player cannot be the primary
controller of a group’s electronics — even of its
drum machine. Yamaha has incorporated breath
control into its DX7 synthesiser, and the
SynthAxe — a recently developed digital guitar —

_ has been designed to use MIDI for controlling the
output of a Fairlight.

This means that a string sound on the Yamaha
could be produced with the unique performance
characteristics of a saxophone, and, similarly, a
Fairlight trombone sample could be articulated by
strumming a guitar. Although neither of these
developments is imminent — after all, the
SynthAxe is a very expensive ‘guitar’ at £7,000 —
they indicate probable tendencies for live
performance in the near future. There is likely to
be a gradual reduction in on-stage keyboards;
string, wind and possibly tuned percussion
instruments such as vibraphones will become

more important, and, as sound-sampling
technology becomes cheaper, acoustic sound may
well be predominant.

By the end of the 1980s, musical traditionalists
may be relieved to see — once again — ajazz-style
unit of guitar, saxophone, double bass and drums.

_ They may, however, be confused by the fact that
the guitarist is playing an invisible vibraphone and
the sax-player is ‘breath-drumming’. -

For many groups used to live performance, the
first experience of an advanced recording studio
can be intimidating. They are presented with
musical instruments and operating systems they
have never encountered before and are allocated a
producer who may not know their work or their
intentions particularly well. Yet they are expected
by their record company to produce ‘bigger and
better’ versions of their stage hits in this unfamiliar
environment. It is comparable to putting a semi-
professional theatre company onto a big-budget
film set and expecting an instant box-office
success. Sometimes the transition is successful,
and all concerned are satisfied. But very often, the
original ideas get lost in a maze of studio devices,
and the group is left with an expensive failure.

Most often the breakdown point occurs when
the group discards its own familiar equipment —
and, in effect, its own ‘sound’ — and takes to the
more desirable instruments available in the studio.
But an idea which worked on a Mini-Moog
synthesiser may fall apart when played on a
Fairlight digital sampling computer and, if this
type of musical failure occurs often enough, then
the justification for using such a studio begins to
weaken.

If, however, the musicians in the group are
familiar with MIDI, and if a microcomputer has
been used for storing sequences and other musical
control data, then they will be familiar with the

_ procedures already in use in advanced studios. On
the most immediate level, it should be possible to
try out ideas using a succession of different studio
instruments with the minimum of difficulty, and
with the prior knowledge that ideas and sequences

can be transformed simply by swapping
synthesisers.
A MIDI background is also invaluable when

getting to grips with studio systems other than
those directly involved in sound-generation. A
solid-state logic mixing desk, for example, has a
dedicated computer that will recall and re-run any
series of decisions made in the final stages of
recording — known as mixing. When all the music
has been recorded onto 24 separate tracks of tape
— guitar on one track, backing vocals on another,
lead vocals acrosss three others, and so on — the
crucial task of balancing and mixing all the
elements begins. It is usually at this point that
individual parts are treated with any required
‘effect’ to enable them to stand out or blend im the
mix. A_ single trumpet note may need
reverberation added at one point only, and with
23 other things happening at the same time it is
easy to miss it. Using a computer to handle such
incidents while mixing is like SABRE ae on
a grand scale.

_ Another technique, originally der oped for
aden synchronisation and editing, but emerging
more into music production, is the use of time-
code. Time-code is like a digital clock and trigger
signal, but is laid down onto tape. It uses 80-bit
words to provide synchronisation data when
recording music against video sequences, and
enables musical events and split-second video
edits to be sequenced together.

Musicians, therefore, have good practical
reasons for acquiring
instruments — but, in addition, MIDI is a good
introduction to the more advanced music systems
currently in use. In the next, and final, instalment,
we will take a look at some of the more exotic
computerised music equipment in use today.

MIDI-compatible |

Big Science
Laurie Anderson, New York
poet and performance artist,
combines an unusual mixture
of sounds and sound ©
equipment with film, tape, and
video technology to create a
unique style. In songs like ‘O
Superman’ and ‘Mr
Heartbreak’, she uses or is
backed up by anything from
African bells to state-of-the-art
electronic instruments such as
the Vocoder and Synclavier

THE HOME COMPUTER ADVANCED COURSE 563

PIECE WOR
\

We have already seen that the LOGo user can
define procedures to carry out sequences of
commands. Procedures, once defined, may
be used in exactly the same way as LOGO
‘primitives’ (the basic commands of the
language). It follows, therefore, that we can
use procedures in the definition of further
procedures. We show you how.

As an illustration of this principle, let’s consider
the tangram puzzle. This is a square that has been

_ divided up into seven geometric pieces, which are
combined. in various ways to form different
shapes. In our example, we will use the seven basic
pieces to create a shape that resembles a dog. We
start by defining Loco procedures for each basic

piece; these ‘piece procedures’ are then
incorporated into a further procedure, which is

_ given the name DOG. As the turtle must be
correctly positioned before each piece is drawn,
other procedures — MOVE1 to MOVE7 — must also
be used. :

It would be just as easy to produce this drawing
by simply stringing one command after the other
in one long procedure. Our method uses the
principles of ‘top-down’ design. We have covered
this subject in some detail (see page 476), but, very
roughly, it simply means breaking a problem up
into a number of parts and then proceeding to
solve each part in turn. The great advantage of this
approach is that the LoGo programmer may define
a procedure containing subprocedures that have
yet to be defined. The main procedure cannot be

s

KEVIN JONES:

run, of course, until the subprocedures have been
written or dummy routines provided in their place.
To show how this works, let’s consider how the
dog-drawing program was constructed.

The DOG procedure was written first, even.
though none of its component procedures yet
existed. We then wrote each of the shape-drawing
procedures separately. These were followed by the
positioning procedures. Each time a new
procedure was written, DOG was run to ensure that
everything fitted together properly. When Loco
came to a MOVE procedure that had not been
written it stopped with an error message.
However, it was easy to tell from the drawing
whether everything up to this point was correct, or
if there was an error in the last MOVE procedure.
Our set of procedures demonstrates another

important point — each of the shape procedures,
and the DOG procedure itself, leaves the turtle state
unaltered. That is, the turtle is at the same position
with the same heading at the end of the procedure
as it was before the procedure was run. Such
procedures are said to be state transparent. Making
procedures state transparent eases the task of
putting procedures together to construct more
complex drawings. Take the DOG procedure, for
example: once the turtle is positioned we know
that after drawing a piece the turtle will return to
the position it was in when it started that piece. So
we need know nothing about the internal
workings of the procedures in order to put the
pieces together. By making DOG state transparent,
we make it easier to use this procedure as part of
another — for example, we could draw a whole
screenful of dogs.

LOGO WORKSPACE
By now you will have a fair number of procedures
in the computer’s memory — so let’s take a closer
look at LOGO memory organisation. LoGo’s
working memory consists of a list of nodes (each of
five bytes). Once Loco is loaded, you will have
between 1,000 and 3,000 of these, depending on
the machine you use. As procedures are defined,
these nodes are used up. Other nodes may be used

- as procedures are run or if variables (to be
discussed later in the course) are used.

The procedures you have defined constitute
your workspace. You can see which procedures
are held in the workspace by entering POTS (for
PRINTOUT TITLES). To look at an individual
procedure, use PO (for PRINTOUT) — for example,
PO SQUARE. If a procedure is no longer required,
workspace can be freed by using ERASE — the
command ERASE SQUARE would remove the
procedure called SQUARE from memory. Erasing a
procedure releases the nodes used. Loco will
mark these nodes, but will not yet add them to the
list of free nodes; instead it will continue working
with its present free nodes list until all of these have
been used up. It will then go through its memory,
gathering up all the nodes that have been released
and using these to form a new list of free nodes.
This process is referred to as garbage collection

and is the reason why Loco seems to hesitate for a
second or two from time to time.

SAVING PROCEDURES
In order to make permanent records of your
procedures on disk, you must save the workspace
as a file. Using MYPROCS as an example file name,
you would type SAVE “MYPROCS (note the
quotation marks before, but not after, the file
name). The workspace itself will not be affected by
this. The file may be loaded with READ “MYPROCS.
This causes the procedures in the file to be defined
and added to the current workspace. If a
procedure is defined with the same name as a
procedure already held in the workspace, then the
new definition replaces the earlier one.

Other useful disk-handling commands are
CATALOG and ERASEFILE. CATALOG gives a list of all
the files on the disk, and ERASEFILE “MYPROCS
would erase the MYPROCS file from the disk.
Cassette-based versions of Loco use different
commands — the relevant manual should be
consulted for these.

Procedure Problems
1) Write proceduresforthe ofcourse!)
other tangram shapes 2) Write a procedure to
shown. (You will first have draw a house (simply an
to solve the puzzle of how equilateral triangle above a
to construct the shape square).
from the different pieces, 3) Write a procedure to

Abbreviations
| ERASE :

| PRINTOUT :
| PRINTOUT TITLES POTS

draw a five-by-five board
of squares.
4) Rewrite the procedure
used earlier to draw a Six-
pointed star so that it uses
subprocedures.

POL

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 565

900000000000
gat Buossooudngg 3

House —

Uniform System
_ Libraries of subroutines are
useless without a uniform
documentation system
accompanying them. This is
especially true for cassette
users — inspecting the
contents of an undocumented

~ cassette by loading and listing
each program is a thankless
task

LENDING LIBRARY

It is extremely useful to develop techniques
that make more efficient use of the time and
effort spent in programming. We discuss
one such method — creating libraries of
routines that can be merged into programs
— and list the sort of details that must be
taken into account when programmers
share the task of coding.

Following the structured design methods that we
have already described in this course may seem
like a long-winded approach — but it does, in fact,
save time (not only-in the coding but especially i in
the debugging of a program). This is because
programs that arecreated at the keyboard tend to
have unnecessarily complicated structures and
algorithms, which means that they take longer to
write, are more prone to error and, because they
are more difficult to follow, take much more effort
to test and debug. Planning the program in
advance simplifies the structure and the
algorithms and thus leads to fewer aia errors
and easier testing and debugging.

Most importantly, designing ahead saves the
programmer from writing a control or file
structure that is later found to be inadequate
(perhaps not enough space in a field in the file has
been allowed for). Problems like this, which are
fundamental to the way the program works, can
lead to major portions of it needing to be

rewritten.
Those with a ‘proper’

keyboard may like to invest some time in learning
to touch-type. Apart from this, though, there is
little that may be done to increase the speed at
which program lines are entered at the keyboard.
However, the process of coding programs may be
greatly speeded up in several ways. The first is the
simplest: invent, adopt and use a number of |
‘conventions’ when coding. Such measures
include: using particular types of name for local
variables to differentiate them from main program
variables; beginning each subroutine at lines
ending in 000; ending each subroutine with
RETURN on a line of its own; starting each type of
subroutine in a particular block of lines (file-
handling routines between 9000 and 9999,
utilities at 50000 onwards, and so on).

The benefits of using these conventions are
numerous: you don’t have to hunt for the menu
routines because you know that they are always in
the same place; you don’t have to worry about

typewriter-style |

whether you have used the same variable name in -
the main program and in a subroutine — because
its name will indicate it is a local variable.

PROGRAM LIBRARIES
Such coding techniques are also useful when
libraries of programs are created. A well-
organised library of subroutines can save as much
as half of the coding time on a large program. The

MIKECLOWES

yy —-—____-—

best way to start such a library is to go through
existing programs and take out all the subroutines —
that are well written and have some general
applicability (I/O routines, date routines, upper
to lower case conversion, and so on). Each routine
should be saved as a separate file, and these should —
be grouped together according to function (if they
are to be stored on tape then each function group
should be stored on a separate cassette) with
meaningful file names to identify them. Keep a
card index or a database of the filenames, together
with a description of what each routine does.

_ Needless to say, it is important to ensure that all
library routines are thoroughly tested and
debugged. They will be used in programs for
which they were not specifically designed, so
make sure that they will trap any illegal input
values. You should also ensure that any values
output from the library routines will not cause
problems to the program that uses them. Make
each routine as efficient as possible and include as
much internal documentation as is necessary for
you to understand the routine’s function at a later
date. Add to the collection as the need arises —
there is no point in adding new routines ‘on spec’
as experience shows that this is largely wasted
effort. Don’t forget to number the lines of the
library routines according to the convention
established (this will save on RENUMbering when
the routines are merged into a new program).
Useful library routines may be found in computer
magazines, which often publish routine listings as
well as complete programs (and these can be
cannibalised to obtain the useful subroutines).

To make use of a library like this, it is necessary
to have a way of merging routines to gether to form
a complete program. For those using compiled
languages, a ‘link-loader’ or similar program is
usually supplied; this takes compiled modules and
joins them to make an executable program. For
BASIC programmers, unless a compiler is available,
the easiest way to achieve this is to use a
combination of RENUMber and MERGE commands.
To merge a library routine into the new program,
first load the program, decide where the library
routine will go and make sure there is a large
enough block of unused line numbers for it to fit
in. If necessary, RENUMber the library routine so
that it will go into the space allotted to it. Then use
the MERGE command to join the two programs;
check that everything works as it should and SAVE
the new program with the library routine in place.

GROUP EFFORTS
It is often the case that home computer users work
together in groups to write programs — either at
school or in their user clubs. Most of what has been
said about program ‘design and programmer

efficiency is particularly relevant to such team
efforts. In fact, most of these ideas and the concept
of structured programming were developed in
order to split the workload of commercial
programming projects. Thus, a number of
different programmers could work on different

parts of the same program at the same time to
produce a working program. |

For BASIC programmers to work like this, it is
essential to agree on the conventions to be used .
when coding. Assuming that a design has been
agreed on, the programmer of an individual
module needs to know:

1) What the files will be and how they will be
organised.
2) What conventions have been agreed for
naming variables. The most important variables,
such as arrays that are used throughout the
program, should be named in advance. A
convention should be agreed for naming local
variables. Variables that are passed between
modules should either be named in advance or a
way of ensuring that each is unique should be
devised — adding the module number of the
originating module as a suffix, for instance.
3) What library routines are available to the group,
the format of each of these, how their variables are
named, what they do, and how well tested and
debugged they are.
4) How error-handling routines are organised (for
instance, whether each routine copes with its own
errors or whether the routines set an error ‘flag’,
which is then dealt with by the control routine).
5) The exact function of any module that is being
written. |
6) The exact range and type of data that each
individual module will accept as input and return
as output.

This implies a lengthy planning stage with many
meetings to agree strategy, followed by a short
programming stage. Testing — including the
testing of group-produced programs — will be
dealt with later in the course. The next instalment
will concentrate on the design of programs that
will run faster and use less memory.

THE HOME COMPUTER ADVANCED COURSE 567

HARDWARE/ APPLE [IC

FIRM OFFER

Portable Upgrade
Apple's new, upgraded portable
version of the Apple Il; is the Ile.
The llchas 128K of RAM, an 80-
column display, a variety of
interfaces and a built-in disk
drive. The Ilc costs £925, and is
shown here with the optional

CHRIS STEVENS

With the introduction of the Macintosh,
Apple Computer has firmly established its
name in the UK market. More recently, the
company has turned its attention to
upgrading its existing line of 6502 machines
— the Apple II family. We examine the new
Apple Iic computer, and consider the
company’s marketing strategy.

The success of the Macintosh, and increased
competition — in the US home computer market
from Commodore and in the world business
market from companies like ACT and IBM — had
put the future of the Apple II range of computers
in. some doubt. Many dealers and industry
analysts predicted that the range was nearing the
end of its market life, despite Apple’s insistence
that it would remain committed to the 6502
machine and its large user base. To demonstrate its
support, the company recently launched the
Apple IIc, as well as software and hardware
upgrades for the older Apple II lines. The new
products are expected to extend the market life of
the Apple II by as much as three years.

568 THE HOME COMPUTER ADVANCED COURSE

II helped to create the personal computer market,
dominated US computer sales for several years
and contributed to Apple’s total sales record of
over $1 billion. There are over two million Apple
computers in use worldwide, yet the Apple II has
never reached the same level of sales success in the
UK or other parts of Europe, primarily because of
ineffective pricing and marketing policies. At
£1,500 (including monitor and disk drive) the
machine was priced much too high to be
considered a home computer. And interference
from Apple headquarters in California is often
cited as the reason why Apple has never gained the
kind of share of the UK educational or business
markets that it has in America. Nevertheless, the
relatively small group of Apple users in the UK
tends to be fiercely loyal to the machine.

The latest incarnation of the Apple II is the IIc
(the c stands for compact). It is smaller than its
predecessors by about half, yet houses a half-
height 5zin disk drive in the side of its casing. At
3.4kg (7.51b), the I[cis meant to be transportable,
and is clearly designed to be used during the day at
work and then to be carried home at night.
Towards this end, the IIc has a small carrying
handle moulded into its plastic case, and a choice
of connectors (for use with a composite or RGB
monitor at work and a standard television set at
home). The carrying handle folds back to prop the
machine up into a comfortable working angle.
This also keeps air circulating around the machine
to prevent overheating.

Unlike the previous Apple II models, the IIcisa
closed system, with no expansion slots inside.
Instead, Apple has built several of the most
important options into the machine. These
include the monitor and television display ports; a
joystick port that also supports the optional
mouse; a modem port; a printer port; an audio
output socket and a connector for a second disk
drive. The interfaces are labelled with icons —
small pictorial representations of their function.
The IIcalso has a built-in 80-column display, and
128 Kbytes of RAM. Most of these features are
optional on the Ile, and would require the addition
of at least three plug-in expansion cards.

The Apple IIc has a 63-key QWERTY
keyboard, with a similar layout to the Ile. The
Reset key, however, has been moved to a position
above the left edge of the keyboard, and two small
switches have been added next to it. The left switch
toggles the screen display between 40 and 80
columns. The owner’s manual recommends that
you use a 40-column display when working with a
television set, and an 80-column display for a
monitor. (Some of the existing Apple software will

display only 40 columns, regardless of the switch’s —
position.) The second switch toggles between the
European character set and the North American
characters shown on the keyboard. This is useful
when a character is required that can only be found
in one of the two sets (such as ‘#’, which is replaced
by ‘£’ on the European keyboard). There are two
lights above the right edge of the keyboard: one
indicates when the power is on, and the other
lights when the disk drive is in use.
When you power up the IIc, the disk drive

automatically starts spinning and looks for a disk.
It will continue to spin until a disk 1s found, or until
the Reset key is pressed while the Control key is
held down. With no disk in place, the Ic loads
Applesoft Basic from ROM. Applesoft has been
virtually unchanged since the Apple II+ was
introduced. It varies only slightly from early
versions of standard Microsoft Basic. The use of
Applesoft makes it possible for the IIc to run
Applesoft programs written for earlier models.
Unfortunately, Applesoft lacks many of the
programming structures available in more
advanced dialects, such as BBC Basic. For
example, Applesoft has no RANDOMIZE feature,
AUTO line numbering facility, IF... THEN... ELSE
structure or WHILE command. It also lacks CIRCLE
and PAINT commands for graphics programming.
When there is a disk in the disk drive, the IIc |

runs either DOS 3.3 (Apple II+- and Ile disks) or
the new Apple operating system, PRODOS. This
is a derivative of the operating system Apple
designed for its first business system, the Apple III.
PRODOS has a hierarchical (tree) filing structure.
Disk files are stored in much the same way that
documents are stored in a filing cabinet. Thus, all
files that relate, for example, to project ZED could
be filed on the disk under the heading ZED. The
accounting files of project ZED — such as Costs,
Sales, Revenues — could be gathered into a group
called Accounts. With a manual filing system of

this type, when you wanted to find the file for
Sales, you would first open the main file, ZED, .
then open the Accounts file, and finally pull out
the file marked Sales. In PRODOS, this is done via
a ‘pathname’ that lists the appropriate file names in
order, so the process we have just described would
be accomplished by typing the file names,
separated by slashes:

/ZED/ACCOUNTS/SALES/

Pathnames can be up to 64 characters long. This
process may seem complicated, and in fact it does
take a while to get used to, but in the long run it
simplifies the organising and management of disk
files. Tree filing systems like PRODOS are also
used in MS/DOS, the operating system used on
the IBM PC. .

The screen display of the IIc is also an
improvement on previous models. Besides two
text options (24 lines by 40 or 80 characters), the
IIchas three graphics screens: 40 by 40 (Lo-Res),
280 by 192 (Hi-Res), and 560 by 192 (called
Double Hi-Res). There are 16 colours available.

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 569

‘J/|> HIARDWARE/ APPLE IIC

Apple offers a green phosphor monitor for £140,
and is expected to introduce a flat-panel LCD
display soon. The LCD screen will be
manufactured for Apple by Sharp, and will have a
full 24-line by 80-character display. It will
probably cost about £500. It is expected that a
battery pack for the system will be available soon,
and this will enable the Apple IIcto become a fully
portable computer.

The greatest advantage the IIc has is its software
base. Over 17,000 programs have been written for
the Apple II. Although some of these programs
are available only in America, you can still be fairly
certain that anything you could want to do with an
Apple has probably been done already, and
appropriate software has been written. The
software base includes some of the world’s best
games programs (CHESS 7.0, ZORK, Microsoft
Flight Simulator, Pinball Construction Set); a
wide variety of word processors, spreadsheets and
database programs; accounting programs;
graphics design programs; scientific laboratory
control programs and educational programs (from
beginners’ readers to advanced calculus).

In addition to existing II and Ile software,
Apple has introduced a program called
Appleworks, an integrated word processor,
spreadsheet and database with windowing.
Appleworks is quite sophisticated and easy to use.
The IIc comes with a disk that introduces you to
Appleworks, although it is not a working copy of
the program. As is typical with Apple, the
company presumes that you will eventually want
to buy this £175 package. Other disks provided
with the system are a similar introduction to Apple
L0Go; Apple Presents Apple, an interactive
introduction to the basic system; a very simple
introduction to BASIC programming, and the
PRODOS systems utilities disk. MousePaint, a
mouse-driven: drawing program based on
MacPaint, is also available. _MousePaint. is
supplied with the Apple II mouse and costs £70.

570 THE HOME COMPUTER ADVANCED COURSE

Apple Disk Pack
The Apple ile comes with a disk pack containing five disks. Four
of them introduce the workings of the machine, BASIC

_ programming, and optional applications programs that Apple
hopes you will buy. The fifth is the system operations disk with
PRODOS, Apple's new disk filing system for the Apple II line

The IIc comes with a small pamphlet that
describes how to set up the system, and a 142-page
owner’s guide that briefly and clearly explains
system operations and the use of the five disks that
come with the computer. The manuals are well-
written and colourfully illustrated. They are
oe geared toward the first-time user.

The IIc’s design is very attractive and stylish.
Apple dropped the beige plastic used on the II, the
Macintosh and the Lisa in favour of a bright white
finish. The ‘racing stripe’ lines across the top of the
case let air flow through to the circuits to keep the
system cool.

The Apple Ilc, like its ae ee ee is a great
desktop machine for the office. With the added
LCD screen and battery pack, which are expected
soon, it should earn a reputation as a useful,
portable workmate. Had the price been right, it
could also have been a popular home computer.

/ a

— r—SOa_

MousePaint
The Apple Il mouse Is available for the Il+, lle and llc models for
£70, and comes with MousePaint. MousePaint is based on
MacPaint, but it is a scaled-down version of the Macintosh
program. It allows you to use the mouse to create pictures very 7
easily, and is written to take advantage of the Ilc’s high resolution
Screen display. [0 use the mouse with other Apple || computers,
you must have an extra interlace card that plugs into one of the
internal expansion slots

Composite Video Output
RS232 Printer Port

Power Supply
The lic has an internal 12-volt
power supply, but still requires a
transformer box for 240-volt
mains input

RGB Video Output
By plugging a small PAL adaptor
into this port, the Ilc can connect
to a standard television set

Input/Output Controllers ~
These chips control keyboard
operations, and input and output
ports

Audio Socket —

This can connect the lIctoa an

external hi-fi amplifier

ROM =
This holds Applesoft BASIC
and the housekeeping routines

+

APPLE lIC/HARDWARE

APPLE HC

128K RAM, 16K ROM

24 lines of either 40 or 80
characters. Three graphics display

Disk Drive modes with maximum resolution
The built-in 143K disk drive is of 560 x 192 pixels and 16 colours.
compatible with most Apple I+ —
and lle disks

9-pin joystick port that doubles as
a mouse port: RS232 modem
port; RGB (or PAL TV) output:
composite video output; external
disk drive port, and RS232 printer

A second disk drive can be
connected directly to the lic here

Applesoft BASIC resident in ROM:
LOGO, PASCAL, FORTRAN

63-key typewriter-style keyboard
with four cursor keys,
international character sets

R'S232 Modem Port Avery colourful and easy-to-
understand owner s guide comes
with the machine. Ihe guide is
clearly designed for the first-time

_user. [here are also two slim Hand Control .
This port supports a joystick or manuals to help you set up the llc
the optional mouse and work with the systems utilities

disk

The lic’s greatest strength comes
from its compatibility with the
Apple Il, which means thatit can
run most of the more than 17,000
titles available for the other Apple

128K User RAM
This is double the amount that
comes as standard with the The Applesoit BASIC, which hasnt
Apple lle changed noticeably in six years

and is beginning to show its age,
lacks flexibility. [he Iles price may
putit out of the range of many ©
home users.

CPU
The 65C02 chip is a CMOS
version of the 6502. It requires
less power than other versions
of the chip, so it can be run from 5

| a battery

THE HOME COMPUTER ADVANCED COURSE 571

TYPE CAST
re i ily

The version of Basic used on_ the
Commodore 64 is not without limitations,
although these are seldom a great obstacle
to thoughtful and creative programming. We
give you a program that enables you to
define your own character set.

Wile

The Commodore 64 is capable of producing
splendid sound and graphics — as much
commercial software amply demonstrates — but
its BASIC does not support a single ‘purpose-built’
colour or sound command. The BEEP, DRAW, INK
and PAPER commands supported by Spectrum
BASIC, for example, have no equivalents among the
Sparse set of commands available to the
Commodore 64 programmer. The result is that
most BASIC programs have crude sound and
graphics, and even the best programs tend to
contain many DATA and POKE statements — as the
listing with this article shows. The character-
generating program that we list here makes the
process of defining new characters less demanding
by allowing you to design them on the screen
(rather than POKEing values straight into RAM);
these definitions are ‘then’ automatically POKEd

into memory. | |
We have already investigated in some detail the

procedure involved in defining your own
characters on the Commodore 64 (see page 232).
The essential preliminary actions are performed in
the subroutine at line 61000. The top of user

136
BS
i 40
203
249
eas
eee
een

572 THE HOME COMPUTER ADVANCED COURSE

memory is lowered from location 40959 to 14335.
The entire two Kbyte upper case character set that
the Commodore has resident in ROM (from
address 53248 onwards) is then copied into RAM
(14336 onwards) where it can be accessed and
manipulated using PEEK and POKE statements.
Finally, the VIC (video interface chip) is switched
to address the relocated character set.

Once the character set has been relocated in
RAM, two ‘windows’ are displayed on the screen
by the initialisation routine, and control passes to
the input routine at line 2500. This routine scans
the keyboard and maintains a flashing cursor in
the left-hand or ‘edit’ window. The character
currently being redefined is displayed (suitably
magnified) in this window, with the values of its
eight defining bytes next to it.

The unshifted function keys (f1, £3, f5, £7)
control cursor movement inside this window. The
cell under the cursor (corresponding to a bit in one
of the eight definition bytes) can be toggled on or
off with the shifted function key £2. When this
happens, the eight definition values are updated,
and all occurrences of the character elsewhere on
the screen can be seen to change immediately.

Pressing the shifted function key £4 allows you
to replace the character in the edit window with
another character. Characters are described by
their POKE (or screen code) values as listed in
Appendix F of the User Manual. These values are
not the same as the CHRS codes (although there is a
correspondence), but are more convenient to use
here since the character definitions are arranged in
memory in the order of these codes.

The shifted function key f6 allows you to write a
‘character-sized’ copy of the character being
edited into the right-hand (or ‘text’) window, at the
position corresponding to that of the edit cursor. If
the cursor is in the top left corner of the edit
window, for example, and ‘A’ is the character being
edited, then an ‘A’ will be written in the top left
corner of the text window when f6 is pressed.

Finally, pressing the exclamation mark key
STOPs the program; CONT will restart it. When you
‘quit’ or exit from the program, you can type
NEW and then LOAD another program without
disturbing your re-defined character set.
However, there are problems involved with this.
First of all, the top of user memory has been
lowered so that there are only 12 Kbytes available
for the new program. Secondly, switching off the
machine destroys the new set. Both problems will
be discussed in a future article. In the meantime
you should note the definitions of your newly-
defined characters and use them, if necessary, as
shown in the sample program on page 233.

USER-DEFINED CHARACTER GENERATORS/ PROGRAMMING PROJECTS

THE HOME COMPUTER ADVANCED COURSE 573

= Sa
Ss

eo

Se

Se

S
e

Sax
WES

Ss

S
R

:
;

:
:

:
:

.
S
E

NO
XI
d

21
1

e
g

M
e

O
K
O

S
R
O
A
Y

Y
S

V
U

L
f

k
e

O
k
e

o
C
c
H

e
a
r

e
n

=

:

SPIg
L
e
s
s
e
e
 eee sssasd

SSSSS
s
e
e

ssu h
s
s

S
e

S
I

2 o
n
e
s

g
S

S
s
E
o
a
:

TESuy
Hw S

E
N
S

E
S
E

SSB
C
S
 Sh

w
e

S
B
R
"

oS
B
P
E
S
R
B
E
H
S
E

S
B
D

=
3
e
3

CL)
gbes|

Seeeehs
Seasks

2S5t2592
825222585

O
H

Se
g
e

b
a
g
s

earMrse
S
s
H
#
o
g
r
s
e
s
e
s
c
a
n
e

s
t
o
k
e

S
e
e
s
,

S
A
E
S
S

9
B
a
S
,
8

B
o
v
e
v

ts
"Senne

s
s
x
2
e
5
%

a
e

P
o

S
M
V

B
S

S
B

B
y

Q
B

E
E

a
E
L

C
O
R
R
E

m
o
m
,

u
e
l

l
e
s
a

2
££ S

o

eu
6.2

a=
Ss

2258
o
f

©
Ss

S
e
l
i
g

S
S
8
h
e
o
s
a
r

she
8
8
8
8

S
a

MH S

O
S

OG
W'S

4,
;

S
s

—

a
e

oom
i
e
s

M
S
5
E
Y
V
E
S

e
s

7
°
6
5

O

o
o
:

m
e

E
o
D

S
k
.

o
O

S

Sm,
8S

S
H
K
S
r
o
e
E
x
e
m
w
m
s
e
c
s

|
SS

5
G
S
E
E
S
E
R

COM
os

c
w

CBee
Seco

eees
Egece

SS2eFes
SSseckes

s
3

f
&
e
s

3
o
s

D
O
O
R

o
S

a
s

BO
2
:
5

>
o

p
e
 S
|
 S
e
S
R

SES E
S

a
 S
R
R

B
E
T
E
S

Seb eB estas
:

e
r
,
e
é

e
V
Z
S
H
Z
S
C
E

=
~
 S
5
2
5

S
k

w
G
E
O
G

u
m

S
E
R
V

V
E
S

C
E
S
S

;
Se

Sol ee
eee

ES
Z
E
S
S
t

BEC
SBE

Soe
ese

chee
|

|
S
s
e

SB
b
e
s
e

s
n
e
e
s
o
n
s

S
p
e

s
e
s

kA
oS

esa
a
k
e
e

;
S
O
P
~
p
o
o
h
+
e

§
.
8
,
5
°

£§ S
S

ESB
B
e
s

S
h
o
x
y
S

S
o
e

e
o
8

i)
e
r
r

Gon
£&

fee
e
e

Ne
O
e

eae
H

_

a

=

O
Y

D
e

6

a
B
e
r
s
r

<
«
¢
&
&
B
8

P
F
S
d
o
s
R

S
O

e
r
e

b
o

o
o

=

e
B

2
B
S
3
m
u
d
a

Q
D

a
l

n
n

4

0
.
:

O

~

D)
°
6

8

o)

=

Sonal
SeF

e
s
s
e
s

t
e
e
s

S
F
e
S
o

ome e
 S
y
 b
s
e

&

3
S
a
s

8

5O°?f
oA

<]
w
D

<
6

a
a

=
.

4

oO
D
A

Ss g
w

Ss
o

>)
©

oO
o

O
n
c

e
g
?

v
O
o

oO
D)

=

ov
D)

2
°

c
=

&

S
z

a)
o
O
 &

D
N

C
T
A

Go eae
G
e

«
N
O

o
S

7

&

Q

R
s
s

5
B
E
E
P

F
a
A
S
o

S
e
s
s

h
y

S
E
R

4
o
v
e
a
k
o
r
s
d

=

B
S

SP
SSP S

 S
e
a
h

F
E
B
S

eS
C
e

e
e
e

e
B

Pees
e
e
 oO

js
S
o
o

e
s

S
o
n
e

C
O
S
T
E
S

S
S
S
R

E
S
S

R
S
E
G
E
E

Z
L

S
o
n

P
S
O
;

e
R

S
B
a
e

O
P
E

S
T
E
O
Y
O

E
P
S

S
a
4
S
5
O
H

ESSE
o
o

<

B
P
R
S
 ES

ZEUS
O
R
S
S
S

E
C
E

C
B
S
E

P
E
R
E

E
R
C
R
D

E
S
 H
S
O
S
H
B
Y

>
3

o
e

>

&

Z
2
e
y
g
y
e
o
x
w
e

T
C

oO:
o
m

oO
S
H

=

2)
e
o
8
B
R

S
Y

Y
Y
)

S
S
S
S
I
E
S
S
S
H
E
S
S
E
G
S
H
E
S
E
S
R
S
e
T
S
E

H
S
H
S
S
S
R
E
M
E

A
|

|
04

2.
8
3
3
.
8

5

=

aay
©

7
S
a
g
e
a
s
e
e

E
a

g
o
'
s

2
3

Oo
e
2
5
6

a

c
s

S
o
s

8
t
a
2
=

5

H
A
D
P
O
o
O
n

o
f

v
d

S
e
e
,

2
o
e
t

oe
H
K

C
o
t

H
f

®

2
S
8
o
a
x
e
8

a
O
H

e
e

+
e

Y

a
f
e
s
e
E
s

S

E
&
S
f
s
s
e
2
a

sf

TI
AN

NI
NO

W
NVI

 \

TO BLACK SOCKETS — Track Side ; RED SOCKETS
| -. Take particular care with the

track breaks on this board,
especially the single breaks that
separate the transistors

A

Bes TIP 122
ne

|
TIP 127

| i
| MINICON PLUG: it

| |

| 7407 CHIP |

| TRACK BREAKS @——@WIRELINKS °° 1K RESISTOR DIODE

|

| B

_

|
|
|
| BLACK SOCKETS

| : _ |e |. : : TINNED WIRE

|
Component Side
The TIP 122s are at the right-
hand end of the board, and the

| four diodes among them are

i connected with the black end to

| the edge track and the silver end

to the next track. The ribbon

. cable line from the black sockets

' vee : | > be — ae 4 is soldered to the left-hand end
| —2 4 l”rrC—CiCzia i . >» RESISTOR of this track. The other four

| .. ss lUDr—r—.... : diodes are connected in the

| opposite sense among the TIP -
127s. The minicon plug can be

| DIODE clearly seen on one end of the

| TO BLACK SOCKETS a

| WIRE LINKS »
| |

! THE HOME COMPUTER ADVANCED COURSE 575

NICK DALY

FIBONACCI SEQUENCE
Developed by a Florentine mathematician,
Leonardo Fibonacci, in the 13th century, the
Fibonacci sequenceis an infinite series of numbers
in which each number is the sum of the two
preceding numbers. The sequence begins with 0, 1
and continues:

1 (the sum of 0 and 1), 2, 3,5, 8, 13...

The formal mathematical definition of the

Fibonacci sequence is:

F,=0, F,=1, Foy aan n2=0

FIBRE OPTICS
Optical fibres, made of extremely thin glass or
plastic, can be used instead of copper wire for
voice or data transmissions over very long
distances. A single strand of glass may carry
several thousand signals. Fibre opticsworks on the
principle of internal reflection: light is held within
the strand because it reflects inwards from the
exterior surfaces. This means that the strands may
be bent or twisted through sharp angles with no
effect on transmission. We can illustrate this
principle by considering a container holding
water. A light source shines into the container and,
because the walls are solid, the light remains inside
until a hole is created in one wall, allowing water to
flow out. The water carries the light with it in the
same way that an optical fibre would, so the light
actually bends as it flows with the water.

The amount of information a fibre can carry
and the quality of the signal transmitted both
depend on the optical density of the glass. Cables
constructed of optical fibres are non-conductive,
which makes them useful in applications where
normal conductive cables could present a safety
hazard. They are also relatively secure, being
much more difficult to tap into than ordinary
coaxial cables.

576 THE HOME COMPUTER ADVANCED COURSE

FIELD
In a database, a field is a group of data items under
a specific heading. In a telephone directory, for
instance, the surname is usually the first field,
followed by the forename field, the address field,
and the phone number field. A collection of fields
comprising a defined range of information — a
complete telephone book listing, for example — is
called a record, while each individual piece of data
(a specific person’s surname, for instance) is an
entry. The number of characters contained in an
entry is often restricted; the length being
determined by the nature of the field — so a
surname field might be limited to 26 characters,
the telephone number restricted to 10, and so on.

The word ‘field’ can also be used to refer to a
descriptive element attached to a word or
function. For example, in the address:

the number 57367 can be referred. to as the
instruction field. |

FIFO
An acronym for ‘First In First Out’, FIFO is one
way of dealing with information held in a stack (a
sequential data list in memory). The first element
that is placed in the stack is also the first to be
removed and acted on when the stack is filled. The
stack may be manipulated in the opposite way, in
which case it is referred to as LIFO (for “Last In
First Out’). A FIFO list is also called a queue list or
a pushup stack.

FILE
A fileis a collection of related information that is
saved, altered and re-used after its creation.
Computer files are saved to cassette or disk. They
can contain whole programs, listings of
programming instructions (often-used
subroutines saved as library modules), data files
that are loaded into other programs for specific
applications, text files (such as memos, letters and
other word processing documents), or graphic
data for visual presentations.

In a database, information related to a specific
subject forms a file, which is acted on as a unit. For
instance, in a database of company records all
information concerning personnel would be held
in a ‘Personnel’ file. To locate information about
one particular employee, the database would
search the Personnel: file, which would have its
own location on the storage disk or cassette.

FILE MAINTENANCE
Several operations must be carried out on files to
safeguard the information they contain and to
ensure that such data is up to date. Making back-
up copies of files, deleting out-of-date and unused
records, and updating files are all part of file
maintenance. Vital in a business or programming
context, file maintenance is also essential in small
databases, such as name and address files or a list
of valuable items in a collection.

SIMPLE ARITHMETIC
It is now possible for us to take a detailed
look at several machine code programs that
Show how some simple arithmetic is
performed using the 6809 instruction set.
We pay particular attention to signed
arithmetic, and the use of the condition
code register.

At this stage in the course, we can put some
instructions together into a working program,
although we will need to examine some new
instructions and ways of representing data first of
all. We will begin by devising a simple program
that converts a binary coded decimal (BCD)
number into its binary representation.
A binary coded decimal number (see page 168)

is a way of representing a decimal number in
binary form that is particularly useful when
dealing with eight-bit processors. Using this
representation, each digit in a decimal number is
translated into its binary equivalent. The decimal
number 69, for example, is equivalent to the BCD
representation %01101001: the leftmost four bits
(0110) are the binary equivalent of 6, and the
rightmost four bits (1001) are equal to the decimal
9. Thus, using BCD, we get an entirely different
decimal equivalent than we would if we were
converting the binary number %01101001 (it is
equivalent to 105 decimal).

Our conyersion program will need a number of
new instructions; let’s consider these in turn:

@ LSR (Logical Shift Right): This shifts every bit of
the operand one place to the right. ‘The rightmost
bit is shifted into the carry bit of the condition code

register of the processor, and a zero is shifted into
the leftmost bit of the operand.

@ AND: This logically ANDs each bit of a register
with the corresponding bits of the operand,
leaving the result in the register. This instruction is
most often used to mask certain bits: if a register
contains a one in a bit, then ANDing it with another
bit will copy that second bit into the register; if the
register bit contains a zero, then ANDing it will
always result in a zero. For example, the effect of
ANDing a register value of %00001111 with a given
memory location is to copy the rightmost four bits
only of the location into the register. Thus:

% 00001111 Register value
% 10110110 AND memory location value
%00000110 Result in register

@ MUL: This MULtiplies the contents of the A and B
registers, leaving the result in the D register (the 16-
bit register formed from A and B together). Very
few other eight-bit processors support

multiplication as an op-code. —

@ SWI (SoftWare Interrupt): This is a convenient
way of terminating a machine code program,
returning control to the operating system. We shall
examine this instruction in more detail when we
consider the interrupt system later in the course.
Here is the BCD-to-binary program:

@ Specify value in location counter:

ORG $1000

@ Store BCD 58 in BCDNUM and reserve byte at
BINNUM:

BCDNUM FCB %01011000
BINNUM RMB 1

® Load BCD 58 into the A register and mask the
lower digit. Store that digit in BINNUM:

STARTLDA BCDNUM
ANDA #%00001111
STA BINNUM

@ Load BCD 58 into A accumulator and shift upper
digit (leftmost four bits) rightwards:

SHIFT LSRA
LSRA
LSRA
LSRA

® Load 10 (decimal) into the B register and
multiply by the contents of A:

MULT LDB-_ #10
MUL

® The result is 16 bits in the D register, but as this
result cannot be greater than 90 (10 X 9 = 90),
only the lower byte of D is needed. The lower byte
is in the B register — so add its contents to BINNUM
and store the result:

ADDITADDB BINNUM
STB BINNUM

® Thus, we have the BCD number in BCDNUM and
the binary equivalent stored in BINNUM. We can

_ finally return to the operating system and end the
source code:

RETURN SWI
END

TWO’S COMPLEMENT
The programming examples we have given so far
in the course have all involved simple arithmetic,
and we shall continue in this vein for a little while
longer. Let’s now look at the problem of sign — by
which we mean positive and negative numbers.

THE HOME COMPUTER ADVANCED COURSE 577

The most common method of representing
negative numbers in a computer memory location

~ or register is the form known as two's complement
(see page 328). To obtain the two’s complement of
a binary number, we invert all the digits (change all
the zeros to ones, and vice versa), and add one to
the number. Thus, the two’s complement of 0101
it 1011. | |

But how is this used to perform mathematics
involving signed numbers? First of all, let’s
consider the range of numbers that can be
represented: an eight-bit register can hold only |
256 different bit patterns, which can be used to
represent positive numbers in the range 0 to 255 or
negative and positive numbers in the range -128 to
127. (A 16-bit register can hold values from 0 to
65535 or-32768 to 32767.) We give a table in the
margin that shows how a four-bit binary
representation is made for the decimal values from
-7 to 7.

If you look at the table, you will notice that
the negative numbers all have a one in the most
significant (leftmost) bit position. Similarly, all
the positive numbers have a zero in the most
significant bit position.

As you can see from inspecting this four-bit
table, we can define some basic properties for
signed mathematics based on two’s complement:

@ The two’s complement of a negative number
gives its positive equivalent, and vice versa.

@ The most significant bit is always zero for a
positive number, and one for a negative number.
This makes recognising whether a number is
positive or negative very easy.

® The two’s complement of zero is zero (1111 plus
1). 14

@ Addition and subtraction can be carried out in
the usual way, and any given answer will have the
correct sign. :

You might like to try a few simple addition and
subtraction sums to verify the legitimacy of the last
property. Multiplication, however, is more
difficult when using signed numbers. The MUL
instruction that we used in the BCD-to-Binary
program at the start of this instalment treats the
contents of the A and B registers as unsigned
numbers. If we want to multiply two signed
numbers then we must program it ourselves.

Anybody who has done any programming will
realise that we are extremely limited in what we
can do using the simple ‘linear’ programs that we
have so far used in this course. We can only begin
to do useful things by employing one of the basic

- forms of control structure:

@ Selection: in which we choose between two
different courses of action (like the IF statement in
BASIC)

@ Repetition: in which we repeat a sequence of
operations: |

578 THE HOME COMPUTER ADVANCED COURSE

1) while a certain condition remains true (the
WHILE... WEND structure);

-2)until a certain condition becomes true
(REPEAT...UNTIL); or

3) a certain number of times (FOR . . . NEXT).

All of these structures depend on the ability to test
a condition to see whether it is true or false, the
most common sort of condition being whether a
variable has a certain value or not. In Assembly -
language, we need to use these structures, and will
therefore need to be able to test the values in
registers. We can usually test directly for only two
possibilities (whether a value is zero or not, and
whether it is positive or negative). With extra
‘instructions, however, it is possible to carry out
other sorts of test.

CONDITION CODE REGISTER
These conditions are made available by using the
condition code (CC) register, which we briefly
mentioned earlier in the course (see page 537).
This is an eight-bit register, but unlike the other
6809 registers, we are not interested in the value
stored there. Rather, we are concerned with the
state (1 or 0) of each of the eight bits individually.
Five of the eight bits are devoted to conditions of
the type we have been discussing, the other three
are concerned with the handling of interrupts
(which we will examine in detail later in the
course). One of the five, H (the Half carry flag), is
almost solely concerned with BCD arithmetic,
and doesn’t concern us at present. The remaining
four, which are important at this stage, are:

@ C: The Carry flag, which holds the carry digit (or
borrow in the case of a subtraction) from the most
significant bit after an arithmetic operation. It also
has a useful function when we want to shift the
contents of an accumulator along by one bit; some
of the shift operations put the bit that is lost off the
end into C. This bit, for example, could be used to
test whether a number is odd or even by having the |
least significant bit shifted into it and tested. This is
bit 0 (the least significant bit) in CC.

@ \V: The oVerflow flag, which is set to one
whenever the result of an arithmetic operation is
too large for the register that is supposed to
contain it. This is bit 1 in CC.

@ Z: The Zero flag, which is set to one when the
contents of a register are zero. This is bit 2 in CC.

@ N: The Negative flag, which is a copy of the most
‘significant bit (the sign bit) of a number in a
register; in other words it is set to one if the number
is negative. This is bit 3 in CC.

It is one of the most difficult aspects of Assembly
language programming to keep track of the state
of the flags. Not every instruction will set the flags,
and some flags are set depending on the contents
of the accumulator while others can depend on
other registers as well. The safest procedure is to
test only on the values in an accumulator, and to

do this at the point where the required value
appears, since it is difficult to ensure that the flags
are not changed by any intervening instructions.

The flags are tested by means of ‘branch’
instructions, which are the low-level equivalent of
the BAsic GOTO command. The 6809 uses relative
(rather than absolute) branches almost
exclusively. The difference is that a relative branch
transfers control by so many bytes forward (or
back), while an absolute branch transfers control
to a specified address. The effect, however, is the
same. It distinguishes between short branches,
where the range is expressed in a single byte
(-128 to 127), and /ong branches, which can go
anywhere in memory. We will be using short
branches only.

The 6809 has a large set of branch instructions,
and we will introduce these as we need them. The
following examples illustrate the instructions used
to test and compare the values held in the
accumulators and the use of the branch
instructions to select and repeat procedures.

@ ANDCC: It is not possible to load values directly
into the condition code register, but it is good
practice to set all the flags you need to zero before
you start using them. The easiest way of doing this
is by using the ANDCC instruction, which operates
just like an AND command, using zeros as masks in
the bit positions we want to use.

@ SUB (SUBtract): The operand is subtracted from
the accumulator, which sets the C, V, Z and N flags
on the result. (The H flag is also set if the
subtraction is eight-bit).

@ CMP (CoMPare): This works in exactly the same
way as SUB, except that the contents of the register
are left unchanged. As in SUB, the C, V, Z, N (and
possibly H) flags are set. |

@ BRA (the unconditional BRAnch): This is just like
the Basic GOTO command.

® BGT (Branch if Greater Than zero): This is a test
for the signed numbers. The branch takes place ifZ
is zero (the number is non-zero). To allow for the
fact that the sign bit may be incorrectly set if
overflow has occurred, either N must be zero and V
also zero (straighforward non-negative) or N must
be one and V also one (incorrectly negative due to
overflow). Other similar tests for signed numbers
are BGE, BLT and BLE.

@ BLO (Branch if LOwer than zero): This is an
unsigned test, since it is pointless inspecting N with
unsigned numbers. The branch occurs if the C flag
is set, indicating a borrow after a subtraction.
Similar unsigned tests are BLS, BHI and BHS.

@ A program to find the larger of two signed eight-
bit numbers stored in $3000 and $3001. The larger
of the two numbers to be placed in $3002. First
label the numbers:

NUM1 EQU
NUM2 EQU

$3000
$3001

ANS © EQU $3002
_ ORG $1000

@ The code begins: the condition code flags are set
to zero and the first number is loaded. This is
compared with the other number:

ANDCC #% 11110000
LDA NUM1
CMPA NUM2

@ If NUM1 is the larger, then the program branches
to FINISH. Otherwise it loads the second number
into the A register. Whichever number is in the
register when FINISH is reached is then stored in
ANS, and the program returns to the operating
system and ENDs:

“Bet. FINISH
LDA NUM2

FINISH ~— STA ANS
OWI
END

Original Directives
The differing effects that
assembler directives and
Assembly language statements
have on the assembler’s
location counter and on the
contents of memory can be seen.
in this example

THE HOME COMPUTER ADVANCED COURSE 579

THE TECHNOCRATS
its Memopaks have exceeded 250,000 units. The

Special Line
Memotech began with

_ specialised products for the
Sinclair ZX81, such as the |
Memopak, shown here, which
provided the ZX81 with an extra
32K of RAM

Fruits Of Success
After the success of its ZX81

expansion products, Memotech
_ advanced to new products. One

such product is a line of
| - computer peripherals, like the

80-column dot matrix printer,
the DMX 80.
Memotech’s latest venture is the
MTX512, a 64K home and small
business microcomputer. The
M1X512 can store data on.
cassette, or on the optional

floppy disk drive unit pictured
here

. machine. This was later followed by a whole series

established its name as a manufacturer of
useful add-ons and peripherals for the

| Sinclair ZX81. Recently the company
began producing its own range of home
microcomputers — the stylishly designed
MTX series. |

Memotech was established as a result of the
enormous public interest in Sinclair Research’s
first microcomputers. Despite the popularity of
the ZX80 and Z.X81, it was soon apparent that the
machines were severely hampered by lack of
memory, and a huge market for add-on memory
boards was created.

The company’s founders were both lecturers at
Oxford University: Geoff Boyd lectured in
metallurgy at Wilson College, and Robert
Branton taught mathematics at Christ Church.
The two men first met at a computer exhibition at
the university in 1981, and decided to work
together on add-ons for the ZX81. Their first
product was a 16 Kbyte expansion board for the

MEMOTECH

of ‘Memopaks’, including 32 Kbyte and 64 Kbyte
RAM packs, the high resolution graphics (HRG)
pack, a spreadsheet analysis (Memocalc), a word
processor (Memotext), Centronics and RS232
interfaces and a keyboard. :
When Sinclair Research released the Spectrum

in 1982, Memotech decided against producing a
range of add-ons for the new machine. Instead,
using the experience and expertise it had gained in
producing the hardware for the ZX81, Memotech
chose to concentrate its resources on designing

-and building its own machines. Tim Spencer,
Memotech’s sales and marketing manager,
explains: ‘We felt that the ZX81 was not going to
last much longer, so we decided to build our own

computer. We did have the technology, after all.
But the ZX81 has lasted far longer than we
expected, and our packs are still selling well.’
Memotech estimates that international sales of

580 THE HOME COMPUTER ADVANCED COURSE

packs, along with the MTX range of machines, are
manufactured at the company’s headquarters in
Witney, Oxfordshire. The firm currently employs
110 people. | |

The MTX range was officially launched in
February 1984, and the company claims sales of
about 25,000 machines since then. Like the BBC
Micro, the MTX comes in two models: the 32
Kbyte MTX500 and the 64 Kbyte MTX512. The
machines use a Z80A microprocessor, and offer
16 colours in high resolution mode (256 X 192
pixels). The MTX sasic is similar to BBC Basic.
The computer also features an on-board
assembler/disassembler.

The computer can also be expanded to make
use of Memotech’s HRX graphics package.
Starting with an unexpanded MTX500, the user
can add disk drives and the three graphics
controller boards: a 96-bit processor main
controller board, a ‘Frame Grabber’ and a three-
channel A/D converter. The resulting system is
able to produce animations, picture composition
and graphic design up to a full typesetting

capacity. The system costs around £4,500.
Asked about the design philosophy behind the

MTX range, Tim Spencer said: “We are aiming at
the more serious home user and the business
market. The machines are not aimed at the games
market, although of course you can play all the
usual games on them.’

Because the MTX is capable of running CP/M,
it can take ‘advantage of the range of software
available. However, the company is aware of a
lack of cassette-based software that would give the
machine greater appeal to the less serious home
user. There are currently only about 40 different
cassettes available for the MTX, and the company
is actively encouraging the development of more
programs. ‘We have done quite a lot over the last
few months,’ Tim Spencer commented. “We have
close links with Continental Software, and PSS is
writing for us.’ There will also be a number of
educational packages in the near future.

Here, courtesy of Motorola I iTonms od a ecvorere) V6 Iva concluding part of the 6809 programmer's
reference card.

| ecard

OP Operation Code (Hexadecimal)
Rome ok

if
+

Notes:
1

© oO + 7 =o

2

Number of MPU Cycles

IN laglelcis @)) eigelelecian sh’atsi

Arithmetic Plus

Arithmetic Minus

Multiply

<i

Of 2a

(@forgajelicipatciaie en) 1s

elacicis jalce

Half-carry (from bit 3)

Negative (sign bit)

Zero (Reset)

Overflow, 2's complement

Carry from ALU

Test and set if true, cleared otherwise

Nee Nicece!

@rolafol) cole) rere) aioe lis

(@rolaler-) (Jari (eva)

|Evere|[er=|| (e)s

lrofefrer-|| =)are!

| Worel[or-)| (a (oi Uiin7-) (e1¢

This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING Wielels table,

in Appendix F.
Bil clale| a4 aareny es) lal) (ells of fs) efit ole clay, er of 16 bit registers.

The 8 bit registers are: A, B, CC, DP

The 16 bit registers are: X, Y U, = 8 ve

EA is the effective address.

The PSH and PUL instructions recuire 5 cycles plus 1 cycle for each byte pushed or pulled.

_ 516) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).

SWI sets | and F bits. SWI2 and SWI3 do not affect | and F.

lerelarelitroras Codes set as a direct result of the instruction.

Value of half-carry flag is undefined.

Special Case - Cary set it b7 is SET.

e
e
e
e
e
e

e
o
e
e
s
c
e
o
e
e
e
t
8
s
t
e
e
r
e
e
#
e
s

e
a
e
e
o
e
e
e
o
w
e
e
s
g
*
e
e
¢
e
e
e
#
o
#
s
8
n
5
r
e
s
e
e
e
#
e
e
#
s
¢

e
e
r
e
o
e
r
s
c
e
r
e
e
s
e
e
e
o
e
e

s
e
e
s

c
o
e
@
e

e
o

e
s
v
e
e

r
e
n
e

e
*
w
e

e
o

e
e
v
e
e

e
s

6
6
 e
e
@
e
e
e
e
e
s

e
e
v
e
e

e
e

t
e
e

e
e
e

&

2

e
@
e
@
e
s
o
e
s

po
oh

~

e
e

@

s
e

e
s

0
@

@
6

¢
g
g
.

2
a
c
¢
c
e

eee 8 @

e
@
o
e
r
e
c
e
e
n
v
e
e
n
e
 *
e
e
¢
o
e

@
e

@

e
o
e
e

pes
e
e

@
e

@
e
e
o
e
v
e
n
e

w
o
e

e me

8 6 8

e
s
o
e
o
o
e
e
e
e
n
e
e
e
e
o
e
e
s
e
™
a
é

=
n

«
e
s
e

c
o
e

c
e
o

G
e

8 ew

6 eB

O
e

8 8 8 8 FF

R
R

@
e
s
s

c
e

F
f

o
e
e
c
e
t
#
e
e
a
e
e
e
e
s
e
e
e
s
c
e
n
e
r
s
e
v
n
e
e
e
e
v
e

e
e
e

B
e

e
s
e
o
e
c
e
o
e
c
e
o
v
m
e
e
s
e
e
e
o
e
e
r
e
e

s
c
 s
e
v
u
s
e
s
e
e

a
v
e

@
e
e
r
e
e
e
v
e
e
s
e

2
e
c
e
o
v
e
v
e
e

e
e

e
e
0
2
0
6
¢

6

@

@

e
@
e
o
5
e
s
v
e

&
&

0
&

:
-

b
e

c
e
o

e
h

ee
e
e

e
e

e
t

e
s
e
e

6
6

0
0

g
f
.

s
s
e
o
e
n
e

a
n
e

e
e
e

ete @

8

e
s
e
s
e
e
e
e

e
e
c
o
e
o
e
0
e
e
o
e
2
r
e
t

8

0
g

e
e
n
s

e
5

4
B
a
a
r

o
e

8

&

&

©

e
e

Ss o
e

e
s
o
c
o
n
r

e
e

B
e
e

e
e

e
@
e
8
@
e

8

8

e
o
e
c
s
e
e
e
e
s

e
e
e

8

©

@
f

B
o
e

0

0

8

6

o
n

e
e
e

e
e
e
e
c
r
e
s

e
e

6

@
e

R
e
o

2
e
o

e
o

e
e

e
@
e
v
e
c
0
e

o
g

H
e

c
o
e

o
e

&

s
e

@
e
6

6
¢

8
@

ef

s
e
@
e
e
8

@

R
e

e
¢
e
@

@

©

¢

e
e
e
s
e

v
e
r

a

e
o
e
c
e
e
s
e
s
e
s
e

w
a
r
e

a

5

0

e
e
c
e
n
e
w
e
s
e
'
e
e
o
s
e

o
s
e

8

©

@

e
e
e
s
v
s
e
r
v
n
e
i
e
c
e
o
r
e
e
c
e

e
e

%
e
s
e
e
s

e
o

e
e

e
e

2

e
e
e
s

s
d
a

a
h

h
a
d

S
e
e

t
e
h
,

b
i
n
e

f
o
n
,

S
a
s
,

H
e
o

e
s
e

|

e
o
r
v
e
e
e
o
v
e
r
e
e

@eee 6 Z oeeeve @

4

eeeoe@eteoevesvp

eee

seen

&¢

6

peeseoo@@e

ee

4

eee

teceoeseoet

eo

©

eeoevreeoes

vee

seevoee

eevee

eee

8

eeoeoeeeaee

Cee

es

eeovranvee

nent

oF

aseecvcoeoeves

ce

Pe

sescese

eevee

see

%

@eeeeeeoeves

eo

8

eee

ee

se

@

6

f

eeee

eee

og

:

LS.

“ea

se¢©e

eee

@

roe

e@e¢

@e

©

@

.

‘

Roe

@

ee

@

e¢eeeaeeo é

eeseeve

e
e
e

e
e

o
e

e
e
c
e
e
o
e
v
e

e
e
2
e
e
¢
c
e
c
s

e
e
e
c
n
e
s
e
e

e
e
e
e
t
e

e
@
e
e
o
e
e
s
e
s
e

6
=;

rs

©

B
c
c

c
e

s
e
e

a

e
e
s
e
a
e
t
e
e
s
e
s
s

.
e
e
u
a
v
e
v
e

e
e

e
o
o
e
o
e
o
e
e
o
e
e
e
e

v
w

@
e
@
a
o
a
s
e
e
n
e
v
s
e

e
e
e

6

@

e
e
e
e
t
s
e
o
v
s
e
e
r
e

C
o
e
n

e
e
e
s
e
o
e
s
e

e
s

@
e
s
v
e
e
v
e
r
e
v
e

e
e

o
h

e
p
s
c
e
e
e
p
e
v
e
s

e
e

@

C
e
e

e
e

e
e

e
e

e
e

e
e

e
r

e
e
e
,

s
e
e
e
o
e
e
c
e
e
e
e

e
v
e

s
e
o
e
e

s
e
s
s

e
e

8

©

0

et

Oe

e
e
s
e
e
e
s

o
r
.

e
e
c
e
o
e
v
e
v
e
n
e

e
@
o
v
c
e
c
v
e
e
v
e

e
s
e

e

e
S

p
n
t

e
e
n
u
n
e
v
e
s
e
e

e
e
e

e
@
e
e
e
s
e
v
e
e
e
n
#

e
r
e

s
e

e
e
c
e
v
e
r
s
r
e
e
e

e
a
e

e

@
c
e
e
o
e
r
e
e
e
e

e
e

e
e
e

e
s

p
e
s
e
e
e
e
s
e
s
v
e
e
s
e
e
e
v

e
e

8

P
O
P
P

P
P
P

ae

R
r

o
f
,

e
e
e
e

0
82

0
6

0
g

e
e
e
e

B
E
G

8
0
,

R
A
R

P
S

O
A

Y

2
e
e
s
e
e
s
e
s
e
#
e
e

@

R
A

i
e
e
e
e
e
s
e

é
e
@
e
e
s
e
o
e

e
e
o
e
o
e
e

IAN McKINNELL

